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Abstract 

We present a general method for translating .sorting by comparisonsWgorithim to 

algorithms that compute a Hamilton path in a tournament. The translation is based 

on the relation between minimal feedback sets anil Hamilton paths in tournaments. We 

prove that there isaone to one correspondence between the set of minimal feedback sets 

and the set of Hamilton paths. In the comparison model, all the tradeoff for sorting 

between the number of processors and the number of rounds hold when a Hamilton path 

is computed. For the CRCW model, with 0(») processors, we show the following:(i) 

Two paths in a tournament can be merged in O(loglogn) time (Valiant's algorithm 

[Va]); (ii) a Hamilton path can be computed in O(logn) time (Cole's algorithm). This 

improves a previous algorithm for computing a Hamilton patborhofle-rmming time wa» 

OOog2 T») trsing 0(n3) professors. '' \* 
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1     Introduction 

A tournament T = (V. D) (\V\ = n) is a directed graph in which every pair of vertices is 

joined by a directed edge. It can be viewed as a complete graph whose edges are given an 

orientation. A Hamilton path in a graph is a simple path that contains all the vertices, and 

each vertex appears exactly once. A well known theorem states that there is a Hamilton 

path in every tournament [Re, Be]. 

In this paper we investigate the complexity of computing a Hamilton path in a tourna- 

ment and other problems related to it. Our methodology relies on the intimate relationship 

that exists between Hamilton paths and minimal feedback sets in tournaments, and their 

connection to sorting algorithms. Sorting by comparisons may be viewed as computing a 

Hamilton path in a transitive (acyclic) tournament. The purpose of this paper is to show 

the opposite direction, namely how sorting algorithms can be generalized to compute a 

Hamilton path in an arbitrary tournament. 

Sorting by comparisons is a well investigated problem, perhaps the most in computer 

science. We show how to exploit the wealth of results on it to design parallel and sequential 

algorithms for arbitrary tournaments. 

Parallel algorithms to compute a Hamilton path in a tournament have appeared in [Na, 

So], but were designed by ad hoc principles. The key idea in computing the Hamilton path 

in both papers is the following: in every tournament there exists a vertex (separator) whose 

indegree and outdegiee are bounded from below by \V\/4; this gives a recursive formulation 

of the problem with only a logarithmic number of steps. The difficulty with this approach is 

that the best bound known for finding a separator requires 0(n2) processors. Ramachandran 

[Ra] showed using adversary arguments that a lower bound on the number of edges whose 

orientation must be known in order to find a separator is Q(n2). 

In analogy to sorting, we define two additional problems on tournaments: 

• Merging two paths such that the relative order of the vertices in the original paths 

remains after t he merge. 

• Jb-selection, e.g. finding the fcth vertex in the Hamilton path in a transitive tourna- 

ment, is generalized to finding a vertex which is the fcth in some Hamilton path in an 

arbitrary tournament. 

We now present a summary of our method. A minimal edge feedback set F in a directed 

graph G — (V, D) is a set of edges such that G' - (V,D - F) is acyclic, and F is minimal 

with respect to containment. We prove that there is a one to one correspondence between 

the set of minima! feedback sets and the set of Hamilton paths in an arbitrary tournament, 

and show how a minima! feedback set can generate a Hamilton path and vice versa. We also 
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show that an edge in a transitive tournament whose orientation is known by implication, 

cannot appear in the Hamilton path. Assume now that the input to a sorting algorithm is 

not a transitive tournament but rather any arbitrary tournament. If a minimal feedback 

is computed for each round of comparisons and its orientation flipped, namely the sorting 

algorithm is "cheated", then the Hamilton path computed by the sorting algorithm will also 

be a Hamilton path for the original input. Intuitively, this happens because the edges on 

which we "cheated" are actually implications. These notions are formalized and proved, and 

they result in a general method for translating any sorting (or sorting related) algorithm to 

an algorithm that computes a Hamilton path. 

There are two known proofs for the existence of Hamilton paths in tournaments. One 

proof is Redei's proof [Re], and the other is the aforementioned separator theorem. In view 

of our results, the first proof corresponds to insertion-sort, whereas the second to quick-sort. 

In fact, our results imply that the known sequential sorting algorithms also compute a 

Hamilton path in an arbitrary tournament. 

The equivalence between sorting and computing a Hamilton path holds both in the 

comparison model and in PRAMS. Valiant's comparison model [Va] can be easily generalized 

to arbitrary tournaments. In this model we prove that the complexity of computing a 

Hamilton path in an arbitrary tournament and in a transitive one is the same. It follows 

that all the lower bounds, upper bounds and processor-time tradeoffs for sorting, apply also 

when computing a Hamilton path in an arbitrary tournament. These bounds and tradeoffs 

have been proved in a series of papers, [AA1, AA2, AAV, Al. AV, BHc, BHo, P]. Hell 

and Rosenfeld [HR] have also considered the sequential complexity of algorithms in the 

comparison model for computing generalized paths in tournaments. 

The situation with implementing our translation method in the PRAM model is more 

complex. The difficulty is that it requires the computation of a minimal feedback edge set 

in a directed graph. It is not known whether an NC algorithm exists for this problem. 

We consider two PRAM sorting algorithms, and give for these special cases a non trivial 

procedure that computes a minimal feedback set in constant time. The algorithms are 

Cole's merge-sort [Co] and Valiant's merging algorithm [Va], and our results are in the 

CRCVV model. Hence, a Hamilton path can be computed in 0(log n) time, and two paths 

of length n can be merged in O(loglogn) time; both algorithms use 0(n) processors. 

These two algorithms achieve an optimal speed (up to a constant factor) with respect 

to the sequential complexity. Notice that in our case the number of processors is linear in 

the number of vertices and not edges. This result is interesting by itself. 

Our results also imply an 0(n log n) sequential algorithm for computing a Hamilton path 

in an arbitrary tournament. As we already have mentioned, merge-sort will also output a 
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Hamilton path for an arbitrary tournament. This hound also follow«; from Redpi"s proof [Re], 

but only when appropriate data structures are used. It can be proved that Batcher's sorting 

network [Da], also computes a Hamilton path when the input is an arbitrary tournament. 

However, it is not obvious whether th" AKS sorting network [AKS] can be adapted to 

tournaments. This motivates the search for a sorting network whose depth is less than 

0{log2n) and also computes Hamilton paths. It would also imply better bounds for EREW 

algorithms. 

As for the it-selection problem, it is easy to show a lower bound of ft(log»/loglogn) 

time for any PRAM model even in the case of transitive tournaments. Hence, the best 

strategy (up to a factor of O(loglogu) would be first to compute a Hamilton path, and 

then solve the ifc-selection problem. On the other hand, in the comparison model, the result 

of [AKSS] implies an O(loglogn) upper bound. 

2    Terminology and preliminaries 

Let r = (V,E) denote a tournament, that is a complete graph whose edges are oriented. 

Let the cardinality of the vertex set be denoted by n. If an edge is oriented from v to ti\ 

then we say that v is smaller than w {«■ is greater than v) and denote it either by r < u\ 

or by v — w. A path t>0, Vi,..., üjt is a sequence of vertices where v, < t?,+i and r, ^ Vj for 

0 < i ^ j < k. A cycle is a path where r0 = rk- If vertex v precedes vertex w in a path P. 

then v < w with respect to the path P or r is below w (w is above v). The first and last 

vertices in the path are called bottom and top respectively. 

A tournament is transitive if and only if it is acyclic. An implication in a transitive 

tournament is an edge whose orientation is implied by the orientation of other edges in the 

tournament, namely to avoid cycles. 

Let P and Q be two paths in an arbitrary tournament and let R be the result of merging 

P and Q. Then this merge has the following property: if r < w with respect to P (Q). then 

also v < it' with respect to R. 

An edge feedback set F in a directed graph G - (V. D) is a set of edges such that 

G' = (V,D- F) is acyclic. Computing such a set of minimum cardinality is NP-complete 

[GJ], whereas computing a minimal such set with respect to containment can be easily done 

in polynomial time by a greedy algorithm. An easy property of minimal feedback sets is 

that the graph resulting from inserting any edge of F in G' is cyclic. 

The graph G = (V, W,Q) is called a complete path directed bipartite graph (abbreviated 

CPB) if Q contains all the edges between V and U", and the graph induced by V (W) is a 

directed Hamilton path. 
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3    Hamilton paths, minimal feedback sets and the compar- 

ison model 

In this section we show how Hamilton paths and minima] feedback sets are related to each 

other in tournaments. We first extend the parallel comparison model to tournaments. This 

model was first introduced by Valiant [Va] for the purpose of analyzing sorting algorithms; 

only comparisons are taken into account, in it, whereas internal processor computation and 

communication are not charged for. The structure of an algorithm in this model is the 

following: in each round a set of element pairs are compared until the output is known. 

The aim of an algorithm is to minimize both the number of rounds and the total number 

of comparisons. 

We extend this model for tournaments in the natural way. The answer to a comparison is 

the orientation of an edge in the tournament. Hence, in the beginning we have a tournament 

whose edge orientation is unknown, and at each round, we ask for the orientation of a set 

of edges. The algorithm proceeds till the induced graph of the known edges contains the 

solution. Let /(;>.k) denote the minimum number of comparisons needed to compute a 

function / in A rounds and p processors. As we already have mentioned, sorting can be 

viewed as computing a Hamilton path in a transitive tournament. 

The next easy lemma is used by our main theorem that follows immediately. 

Lemma 3.1 Let e = n —- v be an edge in a transitive tournament whose direction is known 

by implication. Then r cannot appear on the Hamilton path. 

Proof: If the orientation of e is known by implication then there exists an element w such 

that u —' w and tu — t>. Hence, e cannot appear on the Hamilton path.     | 

Theorem 3.1 Let A be an algorithm that computes a Hamilton path in a transitive tournament 

with complexity H(i>.k). Then there exists an algorithm 8 that computes a Hamilton path in 

a non transitive tournament T with the same complexity //(//./,•). 

Proof: Let Qx,..., Qk be disjoint sets of directed edges and let F = F\ U F2 U • • • U Ft be 

a set with the following properties: 

1. Fi C Qi. 

2. Fi is a minimal feedback set in the graph induced by Q\. 

3. Inductively, F, is a minimal feedback set in the graph induced by (Qx - Ft) U (Qt - 

F2)U-U(Qi-1-Fi.l)uQi. 

It is easy to verify that for every i, P = Fi U • • • U Fi is a minimal feedback in the graph 

induced by Qx U • • • U Q,. 
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Denote by ->F the set of edges of F such that the orientation of each edge in Fi is 

flipped and let Q\ = Q, - F, U -<Fj. Define ^(Ä,,...,«,) to be the set of comparisons in 

round / + 1 of algorithm A under the assumption that the comparisons in the first /' rounds 

were Rx, R,. With these notations, the set of comparisons of Algorithm B, Q\,--,Qk, 

will be derived from algorithm A in the following way: 

1. Q\ ~A{%) 

2. Qi+i *->!((?'„...,(?;) 

First we show that Algorithm B is well defined by proving that H, = Q\ U • • • U Q'_j is a 

legal input to round j of algorithm A. It is easy to verify that H, is a legal input if it is 

acyclic. Assume to the contrary that there is a cycle c in it. The edges of Hi are of two 

types: edges of the minimal feedback set F' that were flipped, or unflipped edges. By the 

definition of a minimal feedback set, for every edge e = (u -+ t>) € F\ there is a path pe of 

unflipped c-dges from t to a. Now, exchange every edge e € c that belongs to F' by pe and 

get as a result a cycle of edges that were not flipped. If that cycle is not simple, it contains 

a simple cycle as a subgraph, hence contradicting F* being a minimal feedback set. 

Now that Algorithm B is well defined, assume to the contrary that its output p is not 

a Hamilton path in T. The path p is not a Hamilton path only if it contains edges whose 

orientation was flipped, namely edges that belong to F, the minimal feedback set. This 

cannot happen as the edges of F are implications in the graph induced by Hk, and therefore 

cannot appear on the Hamilton path by the lemma 3.1.      I 

Corollary 3.1 Let A be an algorithm that merges two paths in a transitive tournament with 

complexity A/(p, k). Then there exists an algorithm B that merges two paths in a non transitive 

tournament with the same complexity.     | 

Another problem that was extensively studied in transitive tournaments is the fc-selection 

problem: find an element larger than k - 1 elements and smaller than n - k elements. This 

problem can be generalized to non transitive tournaments in two ways. The first one is 

to find an element in the tournament (if one exists) whose indegree is exactly equal to k. 

It can be shown that the minimum number of comparisons needed to determine such an 

clement is Q(»2) [Ra], and therefore the running time cannot be polylogarithmic with a 

linear number of processors. 

A more relaxed definition is to find an element v in the tournament such that v is the 

fc-th element in some Hamilton path. We show that the complexity of this problem is 

equivalent to the complexity of fc-selection in the transitive case. 
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Corollary 3.2 Let A be an algorithm that solves the ^-selection problem in transitive tour- 

naments with complexity S(p.k). Then there exists an algorithm B that solves the it-selection 

problem in non transitive tournaments with the same complexity. 

Proof: Algorithm A is translated into B in th~ same way as in Theorem 3.1. The corollary 

follows from the observation that any ^--selection algorithm can be viewed as a step in a 

sorting algorithm.      B 

It follows from Corollary 3.2 that the Selection algorithm of [AKSSj in the comparison 

model whose time complexity is 0(loglog») with a linear number of processors, can be 

applied to arbitrary tournaments as well. On the other hand, in the PRAM model, we have 

the following theorem that implies that the best strategy for fc-selection, (up to a factor of 

O(loglogn)), would be first to compute a Hamilton path. 

Theorem 3.2 There is a lower bound of fi(logn/loglog??) on the complexity of the fc- 

selectbn problem for transitive tournaments in the PRAM model. 

Proof: This follows easily from the lower bound of [Bea] on computing the exclusive OR of 

a bit vector, as it also implies a lower bound of fi(log n/ log log n) on sorting. Assume there 

was a fc-selection algorithm whose time complexity was better than O(logn). Invoking this 

algorithm n times simultaneously for k = 1,2 n would imply a better bound for sorting. 

Hence, a contradiction.     | 

Another consequence of Theorem 3.1 is the following relation between Hamilton paths 

and minimal feedback sets. 

Theorem 3.3 Let V be the set of all Hamilton paths in a tournament T and let T be the set 

of all minimal feedback sets in a tournament T. There is a one to one correspondence between 

V and T. 

Proof: We first show how a minimal feedback set F can be computed from a given Hamilton 

path p. For every pair of vertices v,w such that v precedes w in the path, add the edge 

(v,w) to F if it is oriented from w to v. Obviously, F is a minimal feedback set and two 

different paths cannot generate the same minimal feedback set. We now prove the other 

direction. Let F be a given minimal feedback set in a tournament T and let 7" be the 

tournament in which the orientation of the edges in F were flipped. By Theorem 3.1, a 

Hamilton path in V is also a Hamilton path in T. let /, and F2 be two minimal feedback 

sets and let v -* w be an edge in F] and not in F2. Fx and F2 cannot generate the same 

path as T{ will contain v <- w and T^ will contain v -? w.     | 

It follows from Theorem 3.3 that all the results on the cardinality of V [Mo] apply to 

T as well. A criterion to decide whether there is a path in a tournament that starts at a 

given vertex v and ends at some other given vertex w also follows from Theorem 3.3. Let 
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in,, (ont,.) be the set of incoming (outcoming) edgps into v (out of v). 

Corollary 3.3 A necessary and sufficient condition fc the existence of a Hamilton path from 

<> to w is the existence of a minimal feedback set containing both inv and ontw 

Proof: Assume that such a minimal feedback set exists. After its edges are flipped, v 

becomes a source and w a sink and hence, according tu Theorem 3.1, there is a Hamilton 

path from v to w. If a Hamilton path from v to tv exists, then inv and outw belong to its 

corresponding minimal feedback set. (Same construction as in Theorem 3.2).     I 

4    The CRCW model 

In this section we exhibit algorithms for sorting and merging in an arbitrary tournament 

that are based on Theorem 3.1. The complexity of these algorithms matches the complexity 

of the corresponding algorithms in transitive tournaments. 

In the first subsection we present Algorithm MFS that in 0(1) time finds a minimal 

feedback set in a CPB graph G - (V, W,E). In the other two subsections, we show how to 

translate certain algorithms for sorting and merging in transitive tournaments, to algorithms 

in arbitrary tournaments by calling MFS as a subroutine. It turns out that computing a 

minimal feedback set in our special crses, reduces to computing it in a CPB graph. We 

shall prove that in each rase, the feedback set computed by repeated calls to Algorithm 

MFS is indeed the minimal feedback set required by Theorem 3.1. The algorithms chosen 

are (they both use 0(n) processors): 

Merging: Valiant's merging algorithm [Va] with O(loglogn) time complexity. 

Sorting: Merge-Sort [Co] with O(logn) time complexity. 
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4.1    Finding the minimal feedback set 

Algorithm MFS invokes the two procedures MAXINDEX and MAXPREFIX. We now 

present them and prove that each can be implemented in 0(1) time. 

Procedure MAXINDEX(.l): 

input: A binary sequence A = a\ , at;, I processors. 

output: The maximum index k. \ <h < L such that A* = 1. 



Lemma 4.1   MAXINDEX can be implemented in the CRCW model in 0(1) time 

Proof: It is well known that compntint.; the OK (respectively, AND) of a binary sequence 

of l.Migth ( with t processors takes 0(1) time in the CRCW model. 

First we show how to compute MAXINDEX in 0(1) time with f2 processors. Each 

element of A such that a, = 1 computes 6,- = maxi<:j<cn{j) in 0(1) time. (This is possible 

as each «, has C orocessors available). If b, = 1, then there exists an index j > i such that 

(ij - 1, and therefore i cannot be the desired answer. In this case we set a, = 0 and clearly, 

only one value remains equal to 1. The index of this value is the answer. 

Now we show how to compute MAXINDEX in 0(1) time in the CRCW model with 

only £ processors. (For clarity, assume that y/l is an integer.) 

1. Divide the ( elements of the sequence into \fl blocks where each contains sft consec- 

utive items. 

2. For 1 < » < v/f, let c, denote the OR of the »-th block. 

3. Let k be the output of Procedure MAXINDEX when the input is the vector ct , c/^. 

This takes 0( 1) time as there are ( processors and the vector is of length y/(. 

1. Let k' be the output of Procedure MAXINDEX when the input is the fc-th block. 

This takes 0(1) time as there are C processors and the block is of length \/i. 

5. The output is k'. 

I 

Procedure MAXPREFIX(,4,£): 

input: A sequence A = a\,...,at of integers; I2 processors. 

output: A sequence B = &i,..., b( of integers such that for every i, 1 < i < C, 

6, = max {at;}. 
l<t<i 

Lemma 4.2 MAXPREFIX can be implemented in the CRCW model in 0(1) time. 

Proof: First construct in 0(1) time a matrix M = {»",J}K,J<<: where Wij = 1 iff 

n, > «j, or i = j. Each row i calls a variation of procedure MAXINDEX and computes 

in 0(1) time: the minimum index j in the subrow m,)l+1,..., mitt such that n»,j = 0 and 

»'.-.:+1 = • • • = »n;j_i = 1- For every k, l<k<iorj<k<£ set m;,* = 0. If now 

niij = 1, then a, > a, and for each k, i < k < j, it is also known that «, > ak. 

Therefore, it now remains for each a, to find the minimal index t such that niij = 1. 

Again, this can be done in time 0(1) by calling a variation of procedure MAXINDEX for 
each column of the matrix M.     | 
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V (V 

t'l . . u>, 

a. Cycle of type 1 
I't.te,, tv,...,r,. 

b. C 

IV 

• tX'l 

ycle of type 2 
t'j,ti»;,...,uy,t>,-. 

W 

c. Cycle of type 3 
Vi,Wj,...,Wy,Vii,...,Vi 

Figure 1: The three types of cycles. 

Wo arc now ready to present Algorithm MFS. 

Algorithm MFS: 

Input: A complete path bipartite graph G = (V,\\\Q); V = t>i,.. .,ur; W = W\,...,w,\ 

0(r2 + rs) processors. 

Output: A minimal feedback set F in G. 

For all »', 1 < J < r : 

1. Define a(i) as follows: 

(a) If ü; > w„ then a(i) = a: 

(b) else, if Vi < wj, then a(i) = 0; 

(c) otherwise, let a(i) be the maximum index j such that Wj < V{ < u»J+i 

(l<j<s-l). 

2. Let 6(t) be the maximum value among {«(1),...,o(t)}. 

3. For all j, 1 < j < b(i): if t>; < Wj then add the edge r, -* Wj to F. 

> 

If 

li 



Lemma 4.3 The set F computed by Algorithm MFS is a minimal feedback set in Q 

Proof: F is a minim.il feedback set if Q' = Q - F is acyclic and if adding an edge of /•' to 

Q' generates a cycle. 

Assume to the contrary that there is a cycle in Q' and suppose that the cycle is one of 

the following three types: 

1. t>;,uyty,...,r, {Figure la); 

2. r,,uy...,uy,r, (Figure lb); 

3. v.-, Wj,..., uy, t,-,..., i\ (Figure lc). 

We now show that in the three above cases 6(f) > j and this leads us to a contradiction, 

because in Step 3 of algorithm MFS, edge v, —» Wj € F. 

1. The edge w: — ty is in Q\ therefore the maximality of a(i') implies that «(»') > j 

and consequently, b(i) > b{i') > a{i') > j. 

2. The edge uy -* r, is in Q: therefore «(«') > j' which implies that b(i) > j' > j. 

3. The edge tiy — ty is in Q: therefore 6(f) > 6(«') > a(i') > j' > j. 

Now let c be an arbitrary cycle and let t\ be its highest vertex in V. The successor of r; 

in c belongs to W, and denote it by WJ. We show that there are three possible cases, and 

each implies the existence of one of the above three types of cycles. 

If Wj is the highest vertex of c in W then its successor in c is v,» € V. It follows that 

i' < i (from v, being the highest) and hence Vi,Wj, tv,.. .,«< is a cycle in Q' of type (1). 

Otherwise, let Wj> be the highest vertex of c in W for some j' > j. Denote the successor of 

Wj> in c by «,-• € V for t' < i. There are two cases. If i' = »' then in Q', v„ rv},..., uy, i\ is 

a cycle of type (2). Else, t' < t and VJ,IDJ,..., «y, »i»,..., r, is a cycle in Q' of type (3). 

To complete the proof, we have to show that if an edge Vi -» w}; € F is added to Q'. 

then a cycle is generated. This follows from the following two facts: p| 

Fact 1: The edge «?„(,) -+ Vi is always an edge in Q' as long as a(i) > 0. 

Fact 2: if V{ — «>_,• € F then j < b(i). 

If j < a(»), then t»;,i»y. ..,«>„(,), r, is a cycle (type (2)). Otherwise, by the above two 

facts a(t') < j < b{i). If j = 6(t), then there exists i' < i such that a(t') = 6(t). By Fact 1, 

^6(0 -^ vi' € Q' and r„u'j,rj.,. ..,t>j is a cycle (type (1)). Else, j < b(i) and again, there 

exists i' < i such that a(i') = 6(») > j and by Fact 1 Uty,) -♦ «<< € Q'.  It follows that 

vitwjt...twk{i),vi,,...,vi is a cycle (type (3)).     I 
I 
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Lemma 4.4 Algorithm MFS can be computed in time (){ I). 

Proof: It is easy to soo how stop 1c can be computed with the liHp of procedure MAXIN- 

DEX with r,« processors. Hence, it takes time 0(1) by Lemma -1.2. Step -.' calls Procedure 

MAXPREFIX with r2 processors and can also be computed in time (7(1) by Lemma 4.3. 

Obviously, the rest of the algorithm can be computed in time 0(1) .     I 

4.2    Merging 

In this subsection we show how Valiant's [Va] merging algorithm can be modified to a 

C'RCW algorithm that merges two paths in a tournament. We elaborate on its description 

for two reasons: (i) to simplify the proof of Theorem 4.1; (ii) to the best of our knowledge, 

a detailed description of Valiant's algorithm in the PRAM model does not exist. The 

algorithm uses a linear number of processors (linear in the length of both paths) and its 

time complexity remains 0(loglog n) (n is the length of A", the longer path). Borodin and 

Hopcroft [BH] proved a lower bound of Q(loglog n) on the complexity of merging two paths 

and hence, our results are tight. Hereafter, denote by A* = x\,...,x„ and Y - >j\,...,ym 

the two paths to be merged. We omit ceiling and floor for clarity. 

Valiant's algorithm employs a divide-and-conquer method: in 0(1) time, merging two 

paths is divided into merging many pairs of subpaths from A and V. where in each pair, 

the length of the subpath belonging to A* is y/ii. Then, in 0(1) time, the paths produced 

by merging the pairs are concatenated to output the desired merge. The basic step of the 

recursion is when n is a constant and then, the merge is completed by performing all possible 

comparisons. The time complexity O(loglogn) is the solution of the recursive equation: 

. T(o) = 0(l) ;   o = 0(l)  ; 

. T(n) = T(^) + 0{l). 

We now explain how the divide-and-conquer is achieved. Each of the two paths. A" and 

}', is divided into subpaths whose lengths are a square root of thoir original length. The 

top of every subpath is called its leader, and denote by LX and LY the set of leaders in A" 

and Y respectively. We may sometimes refer to LX and LY also as paths. 

The first step of comparisons in the algorithm is between all the leaders of LX with all 

the leaders of LY. (This can be done in one step as y/irni < n + m.) At this point, for each 

leader y € LY, there are two successive leaders x' < x € LX, such that y > x' and y < x. 

This pair of leaders is uniquely defined in the case of a transitive tournament and can be 

computed in time 0(1). The exact place in A' where y is eventually inserted, will be called 

the insertion point of y. Now, for two consecutive leaders in LY, jr* < y, there is a subpath 

LX{y) in LX and a subpath Y(y) in Y, such that each vertex in these subpaths is smaller 
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LX LY LX 

LX(y) 
V(.v) 

X{r) 

a. After merging LA' and LY b. After merging LX and Y 

Figure 2: Proof of Theorem 4.1 

than y and greater than y' (Figure 2a). 

The second step of comparisons in the algorithm is performed between all the vertices 

in IA'(y) and Y(y) for each leader y € LY. After this step, the insertion point in Y of each 

leader i £ LX is known, namely there are two successive vertices in V, y7 < y. such that 

i > xf and i < y. Again, this pair of vertices is uniquely defined in the case of a transitive 

tournament and can be computed in time 0(1). Now for two consecutive leaders in LX, 

x' < x, there is a subpath X(x) in A* and a subpath Y(x) in Y, such that each vertex in 

these subpaths is smaller than x and greater than x' (Figure 2b). 

Now the subpaths can be merged simultaneously. For every leader x € LX, the algo- 

rithm merges recursively the paths X(x) and Y(x) into the path Z(x). After the recursion 

is completed, x (x') can be inserted above (below) Z(x). 

Thus, by merging y/n pairs of subpaths and then concatenating them through the leaders 

of AT, the desired merge is achieved. 

The comparisons steps that precede the recursive calls in Valiant's algorithm Incur two 

problems in an arbitrary tournament. A leader y € LY (i € LX) may have several insertion 

points in LX (Y); furthermore, if y1 < y (x' < x) then the insertion point of y* (x') is not 

necessarily smaller than that of y (x). 

To overcome these problems, we compute a minimal feedback set in the graph induced 

by the comparisons, as suggested by Theorem 3.1. Whenever a set of vertices is compared, 
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a minimal feedback set is computed and the orientation of its edges is flipped. In all cases, 

the minimal feedback set is either the output of Algorithm MFS, or the union of outputs 

of different calls to Algorithm MFS. There are four cases summarized below: 

1) The base case of the recursion: Here, n is a constant, and the minimal feedback set 

is the output of Algorithm MFS computed on the whole graph. 

2) The first round of comparisons before the recursive calls: Here, the leaders of 

I A" and LY are compared and again, the minimal feedback set is the output of 

Algorithm MFS. 

3) The second round of comparisons before the recursive calls: The graph induced 

by these comparisons is a union of CPB graphs and Algorithm MFS is invoked for 

each CPB graph. The minimal feedback set is the union of the minimal feedback sets 

computed for each CPB graph. 

4) The rounds during the recursive calls: The structure of the comparison graph is 

the same as in case (3) and the minimal feedback set is the union of the minimal 

feedback sets computed for each CPB graph. 

Theorem 4.1 The modification of Valiant's merge algorithm according to Theorem 3.1 merges 

two paths in an arbitrary tournament. 

Proof: We prove it by induction on k, the depth of the recursion. When k = 1 (case 1), 

namely the length of one of the merged paths is a constant, the correctness follows as 

Algorithm MFS computes a minimal feedback set (Lemma 4.3). Assume that the theorem 

is true when the recursion depth is less than k. 

In the first step of comparisons (case 2), the leaders of X and Y are compared. It 

follows again from lemma 4.3 that a minimal feedback set is indeed computed. Hence, the 

picture depicted by Figure 2a is valid. Now assume that the second round of comparisons 

before the recursive calls took place (case 3) and assume also that the union of minimal 

feedback sets computed for edge disjoint subgraphs is not a feedback set. To disprove this 

last assumption, it is enough to show for every cycle that all of its edges belong to the same 

subgraph. We prove the following claim: 

Claim: For each leader y € LY, if a vertex from LX(y) (or Y(y)) takes part in a cycle, 

then that cycle is completely contained in LX (y) U Y(y). 

Proof of the claim: Construct the following graph //: for each leader y € LY associate a 

vertex f(y) in // which is the contraction of LX(y) and Y(y) e.g., a vertex in H can be 

viewed as a set of "old" vertices. Let o and b be two vertices in H\ the edge a -* 6 exists if 

before the contraction, there was an edge oriented from a vertex in the set a to a vertex in 

the set 6. 
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Notice that the loader y is the only vertex in f(y) that was compared to vertices in 

LX(y') for any leader y' < y. The way the segments in LX were chosen implies that y is 

greater than all the vertices in LX(y') and clearly y is greater than all the vertices in V(y'). 

Hence. H is well defined and is isomorphic to a path. The correctness of the claim follows 

immedia* My.      | 

In the rounds during the recursion (case 4), similar arguments to the above hold. The 

analogous claim is that for each leader i € LX, if a vertex from X(x) (or Y{r)) takes part 

in a cycle, then that cycle is completely contained in LX(y)öY(y). Therefore, it is enough 

to compute a minimal feedback set in each CPB graph.     | 

Theorem 4.2 The time complexity of the modified algorithm is O(loglog») when O(n) pro- 

cessors are available. 

Proof: Define T(n,m) to be the time complexity of the modified algorithm. By Lemma 

4.4, Algorithm MFS can be implemented in time 0(1) if the number of available processors 

is 0(r2 + rs), where r and 5 denote the lengths of the input paths. We need to show that 

whenever Algorithm MFS is invoked there is a sufficient number of processors available. 

If n is a constant, the claim follows from the fact that 0(n + m) = 0(nm). When LX 

and LY are compared, the claim follows from the inequality y/nw < n + m. 

If Yl°> = y/n> tnen Hal ^ n- Therefore, there are enough processors for the second 

step of comparisons that precedes the recursive call. Each subpath Y(y) from V that is 

merged with a leaders from LX, receives 0(a2 + ay/m) processors. 

For the simultaneous recursive calls there are enough processors, as each submerge of 

two paths of length n' and m' gets 0(n' + m') processors. 

Clearly, the rest of the algorithm can be implemented in constant time same as the 

transitive case. Hence the recursive equation is: 

T(n,m) = r(vAr,m') + c, 

for some constant c. The solution of the above equality is O(loglogn).     | 

4.3    Sorting 

In this subsection we show how a path in a tournament can be found in the CRCW model 

in O(logn) time using 0(n) processors. We rely on Cole's merge-sort [Co] algorithm and 

compute a minimal feedback set in 0(1) time for each round of comparisons. We shall 

give only an outline of Cole's algorithm, and elaborate on the steps where comparisons are 

performed. We refer the reader to the description of Cole's algorithm in [GR] as our outline 

depends on it and uses its terminology. 
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o'itput to the parent •— rtduce(ial,,) (Z,) 

val„ — tnerge(X,Y), with the help of o!J valv 

a sorted sequence 

from the left child 

(Xi) 

a sorted sequence 
from the right child 

(Yi) 

Figure 3: The local action in an internal node v in the tree. 

In the previous subsection, the merging algorithm implies a sorting algorithm whose 

complexity is O(lognloglogn). To improve the complexity to O(logn), Cole showed how 

to pipeline the merging stops. Let T he the complete binary tree that describes the standard 

mergesort algorithm; a typical node v in T merges two lists X and Y when both .V and V 

are sorted. The novelty of Colo's algorithm is that node v starts processing the lists A" and 

Y before they are sorted. Namely, at the t'th step, two lists A", and Yi are merged, where 

.Y, is a sorted sample of A', and Yi is a sorted sample of Y. This merge can be computed 

in constant time if the results of the f - 1st step are known. 

For the sake of simplicity, assume that n is a power of 2. Let Tv be the subtree rooted 

at v and listu be the list of elements stored initially at the leaves of T„. Let val„ be the 

current list associated with node v of the tree. The sequence valu will always be a sorted 

subsequence of list,,, and will double its size in each round. We say that a node is complete 

if and only if valv = li*tu. Let us now describe what happens in a typical internal node r 

of the tree during the course of the algorithm (Figure 3). 

In the r'th step, node t> receives from its left child and right child sequences Xi and Yi 

respectively. It merges the two sequences to a sorted sequence valv with the help of the old 

valv. If v is incomplete, then it sends every fourth element of val„ to its parent. During 

the first step after v becomes complete, every second element is sent up, whereas in the 

step after that, every element is sent up. The sequence Z, sent by t; to its parent is called 

reduce{valv). 

The algorithm begins when all the leaves send their value to their parents.  A node 
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,V(1)       .Y(2)       .Y(3)       A'(-l)       A'(5)       X(G)       A(7) 

A" 

-5 *6 

V 

V(l)       V(2)       >(3)       V(4)       V(5)      Y(6)       Y(7) 

Z = Ul.*2i*3i*4.*5.*6) 

A'(() = the set of elements of A' lying between the i — 1th and »th elements of Z. 

}"(»') = the set of elements of Y lying between the » — 1th and »th elements of Z. 

merge(X,Y) = mcrge(X(l),Y(l))-merge(X(7),Y(7)) 

Figure 4: Merging A" and Y with the help of a good sampler Z. 

terminates two steps after it became complete, and the algorithm ends when the root 

becomes complete. It follows from the way reduce(valv) is defined, that two rounds after 

t' became complete, its parent becomes complete. Therefore, the algorithm takes O(logn) 

rounds of internal computation in the nodes of the tree. In order to achieve the desired 

complexity, Cole showed how to implement each such round in constant time. 

We now need some notations. The rank of an element i in a sequence A*, rank(x, A"), is 

the number of elements in A* preceding a;. The cross rank from A* to Y, denoted by R[X, Y], 

is the function for which ß[A",!'](*) = rank(x,Y) for each x € A*. A sorted sequence A" is 

a good sampler of the sorted sequence Y if and only if, between any fc + 1 adjacent elements 

of {-oo}uA*u{oo} there are at most 2A' + 1 elements of Y. In our case, assume that k = 1, 

i.e., between any two element of Y there are at most three elements of A*. Note that it is 

always true that reduce(X) is a good sampler of A". 

The motivation behind these notations is as follows. The cross rank Ä[A\1'] (#[!', A*]) 

enables us to merge the sorted sequences X and Y in time 0(1). In this sense, the merge of 

two sequences and their cross ranks, are equivalent. Our description relies heavily on this 

fact. It is also easy to merge in constant time two sorted sequences A* and Y with the help 

of a sequence Z which is a good sampler of both (Figure 4). 

The basic property of the algorithm that entails its correctness is well demonstrated by 

the following invariant preserved at each step: 

pliwS 
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Main invariant: if each A', is a good sampler of A'I+I, and each Y, is a good sampler of 

y,+i then each Z, is a good sampler of Z,+\. 

In terms of cross ranks, the merge of A"1+i and K.+i is performed in three steps: 

1. The four cross ranks: R[X„Yi+x], R[Yi,Xt+i], R[Xi+uYt) and R[Y,+uXt] are com- 

puted with the help of R[Xi, A',+I] and fl[V;,}',+,]. 

2. The two cross ranks: R[Xi+i,Yi+i] and R[Yi+uXi+i} are computed with the help of 

the cross ranks of the previous step. (As stated before, this is equivalent to merging 

Xi+i and Yi+i). 

3. The cross rank Ä[Z„ZI+,] = R{reduce{Xil)Yi),reduce(Xi+i U Y,+i)] is computed 

with the help of the previous calculated cross ranks. 

The three steps can be implemented in 0(1) time with 0(|A",+1| + |V,+i|) processors. The 

reason is that the good sampling property insures us that in each CPB graph, at least one 

of the paths is of length at most three. 

We now explain how to modify the above algorithm according to Theorem 3.1 so that 

it computes a Hamilton path in an arbitrary tournament. Whenever a set of vertices is 

compared, a minimal feedback set is computed and the orientation of its edges is flipped. 

Each stage of comparisons can be decomposed to edge disjoint CPB graphs and in each one 

a minimal feedback set is computed by invoking Algorithm MFS. The union of the minimal 

feedback sets computed in each CPB graph will be a minimal feedback set in the graph 

induced by the set of comparisons. 

Theorem 4.3 The modification of Cole's sort algorithm according to Theorem 3.1 finds a 

Hamilton path in an arbitrary tournament. 

Proof:  For arguments similar to those in the proof of the merging algorithm, it follows 

that the union of the outputs of the calls for algorithm MFS in each node of the tree T, is |   ^J 

a minimal feedback set in the graph induced by the comparisons performed at that node. 

The theorem follows from the next claim proved by induction on (fc,*), where k is the 

height of the tree and »* is the current step. 

• In the t'th step, in a tree of height k, the algorithm computes a minimal feedback set. 

• The sequence sent by v, the root of this tree, in the «th step is consistent with the 

previous sequences sent by v. Namely, if valv contains the relation x < y for x, y € 

listv, then in all previous steps, valu never contained the relation y > x. 

The induction holds clearly for Jfe = 1, namely the leaves. Now let T' be a tree of height 

fc, let v be its root and let t be the current step. We prove the first part of the inductive 

claim by showing that there cannot be a cycle after the edges of the minimal feedback set 
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in T', computed in the j'th step, are flipped. Let A" and V be the sequences that v received 

from its left and right children respectively. It follows from the induction assumption on 

the height of the tree that any cycle contained completely in A' or in V was handled by the 

children of v. On the other hand, a cycle containing vertices from both A* and V could only 

be generated by r. Assume there is such a cycle and w.l.o.g. it contains an edge between 

vertices 0,6 € A' where a precedes b with respect to A*. Because of the second part of the 

induction hypothesis, this edge is a —» 6. However, such cycles are detected by Algorithm 

MFS. 

After flipping the minimal feedback set, the graph induced by lis1v contains an instance 

of Cole's merge-sort algorithm. Therefore, the correctness of the second claim follows from 

the correctness of Cole's algorithm.     | 

Theorem 4.4 The time complexity of the modified algorithm is O(logt?). 

Proof: A more detailed inspection of the algorithm shows that in each CPB graph at least 

one of the paths is of length at most three. In Cole's algorithm each node in the tree gets 

0(|A*t+i| + |li+i|) processors, this number is sufficient to calculate the calls for algorithm 

MFS.     I 
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